Logo Blent.ai
← Retourner à la liste des articles
Image blog
Auteur

Par Maxime Jumelle

CTO & Co-Founder

Publié le 17 avr. 2023

Catégorie Data Engineering

Apache Cassandra : tout savoir sur cette base NoSQL

Apache Cassandra est un système de gestion de base de données distribuées hautement performant, scalable et tolérant aux pannes. Développé initialement par Facebook et open-source depuis 2008, Cassandra est devenu populaire pour son modèle de données flexible, son architecture distribuée et sa capacité à gérer des volumes massifs de données avec une latence faible et constante. Avec ses capacités de distribution et de réplication, Cassandra est utilisé dans diverses applications, notamment pour le stockage de données de série temporelle, la gestion de contenu web, la messagerie et les analyses en temps réel.

Dans cet article, nous allons explorer les concepts clés derrière Cassandra, comment il diffère des autres systèmes de gestion de base de données, ainsi que ses cas d'utilisation les plus courants.

C'est quoi Apache Cassandra ?

La naissance d'Apache Cassandra remonte à Facebook en 2008, lorsque l'entreprise a commencé à développer un système de stockage de messages pour son application de messagerie. Les ingénieurs de Facebook ont réalisé que les systèmes de bases de données existants ne pouvaient pas répondre à leurs besoins en termes de performances, de disponibilité et d'évolutivité horizontale.

Facebook a donc commencé à développer sa propre solution de base de données distribuée de type NoSQL, en s'appuyant sur les travaux de Google sur le système de fichiers distribué Bigtable et le système de gestion de base de données distribuée DynamoDB d'Amazon. Cette nouvelle base de données fut alors appelée Cassandra.

En 2008, Facebook a publié Cassandra sous licence open-source, et la communauté de développement de Cassandra a commencé à se développer rapidement. En 2009, Apache Software Foundation a commencé à héberger le projet Cassandra en tant que projet open-source de premier plan.

Depuis lors, Cassandra a continué à se développer et à évoluer, avec de nombreuses mises à jour majeures et l'ajout de nouvelles fonctionnalités, telles que le support pour les transactions ACID et les recherches en texte intégral. Aujourd'hui, Cassandra est utilisé dans une variété d'applications à haute disponibilité et à grande échelle, et la communauté de développement continue de travailler sur de nouvelles améliorations et fonctionnalités pour le système de gestion de base de données distribuées.


À lire aussi : découvrez notre formation Data Engineer


Contrairement à une base de données relationnelle traditionnelle, Cassandra est conçu pour être déployé sur plusieurs nœuds, répartissant ainsi les données entre eux. Cela permet à Cassandra de gérer des volumes massifs de données avec une latence faible et constante, tout en offrant une haute disponibilité et une tolérance aux pannes élevées. Cassandra est utilisé dans une variété d'applications, notamment pour le stockage de données de série temporelle, la gestion de contenu web, la messagerie et les analyses en temps réel.

Comment fonctionne Apache Cassandra ?

Apache Cassandra fonctionne en mode cluster et en utilisant un modèle de données distribué et réparti sur plusieurs nœuds, appelé le ring. Chaque nœud dans le ring est responsable de stocker une partie des données, avec chaque nœud étant équivalent et ne possédant pas de rôle maître ou esclave.

Lorsqu'un client se connecte à Cassandra et souhaite lire ou écrire des données, il communique avec un seul nœud : le nœud de coordination. Ce dernier coordonne l'accès aux données réparties dans le cluster. Le nœud de coordination utilise un algorithme de cohérence pour garantir que les données sont lues ou écrites avec cohérence dans l'ensemble du cluster.

Cassandra utilise également une technique de réplication pour garantir la disponibilité des données. Les données sont répliquées sur plusieurs nœuds dans le cluster, appelés nœuds de réplication, afin de fournir une redondance en cas de panne ou de défaillance d'un nœud.

Enfin, Cassandra utilise également une stratégie de partitionnement pour répartir les données sur les nœuds dans le cluster. Les données sont réparties en utilisant une clé de partitionnement, qui est souvent basée sur une colonne de la table. Les données sont ensuite partitionnées en plusieurs partitions, qui sont distribuées sur différents nœuds dans le cluster.

Quels sont les avantages d'Apache Cassandra ?

Apache Cassandra présente plusieurs avantages, notamment :

  • Haute disponibilité et tolérance aux pannes : avec son modèle de données distribué et sa stratégie de réplication, Cassandra garantit une haute disponibilité des données en cas de panne ou de défaillance d'un nœud.
  • Performance élevée : Cassandra est conçu pour fournir des performances élevées, avec une latence faible et constante, même lorsqu'il gère des volumes massifs de données.
  • Mise à l'échelle : Cassandra est évolutif horizontalement, ce qui signifie que les performances peuvent être améliorées simplement en ajoutant plus de nœuds au cluster.
  • Modèle de données flexible : Cassandra utilise un modèle de données sans schéma, qui permet aux utilisateurs de stocker des données de manière flexible sans avoir à définir à l'avance la structure de la base de données.
  • Facilité de gestion : Cassandra est facile à gérer et à déployer, avec des outils intégrés pour la surveillance, la gestion et la récupération de données.

En utilisant ces techniques, Cassandra est capable de gérer des volumes massifs de données, tout en offrant une haute disponibilité et une tolérance aux pannes élevées.

Néanmoins, il y a également des inconvénients à prendre en compte. Tout d'abord, le modèle de données sans schéma peut rendre certaines requêtes plus complexes et moins performantes, en particulier pour les requêtes nécessitant des jointures de table. En outre, Cassandra nécessite une infrastructure de matériel robuste pour supporter les charges de travail à grande échelle, ce qui peut entraîner des coûts supplémentaires pour les entreprises.

Qui utilise Apache Cassandra ?

Elle est notamment utilisé par de nombreuses entreprises et organisations dans le monde entier pour stocker et gérer de grands volumes de données. Apple utilise Cassandra pour stocker les données de synchronisation des utilisateurs dans iCloud, et Netflix l'utilise pour la gestion des données de ses clients et pour stocker les données de visionnage de vidéos.

Autre exemple connu, Twitter l'utilise pour stocker les tweets, les messages directs et les données de profil des utilisateurs. Enfin, d'autres entreprises comme Cisco, IBM ou encore Airbnb utilisent également Cassandra pour stocker des données de profil, de journalisation, de réservation, d'utilisation et de suivi des utilisateurs.


À lire aussi : découvrez notre formation Data Engineer


La popularité de Cassandra auprès de ces grandes entreprises atteste de son efficacité, de sa fiabilité et de sa capacité à répondre aux besoins des applications à haute disponibilité et à grande échelle.

Quand utiliser Apache Cassandra ?

Apache Cassandra est une bonne option pour les applications Web qui nécessitent une haute disponibilité et une très bonne tolérance aux pannes.

  • Stockage de données de série temporelle : Cassandra est souvent utilisé pour le stockage de données de série temporelle, telles que les données de capteurs, de journaux, de transactions financières et de suivi de l'utilisateur. Avec ses performances élevées et sa capacité à gérer des volumes massifs de données, Cassandra est capable de stocker ces données de manière fiable et efficace.
  • Gestion de contenu web : Cassandra est utilisé pour stocker des données de contenu web telles que des profils d'utilisateurs, des commentaires, des publications de blog et des médias sociaux. La flexibilité du modèle de données sans schéma permet de stocker ces données de manière flexible, tandis que la réplication de données garantit leur disponibilité et leur tolérance aux pannes.
  • Analyse en temps réel : Cassandra est également utilisé dans les applications d'analyse en temps réel pour stocker les données de manière efficace et fiable, ainsi que pour fournir des performances élevées pour les requêtes en temps réel.

Articles similaires

Blog

23 mai 2023

Data Engineering

Apache Phoenix est une extension open-source de Apache HBase qui fournit une couche de requêtes SQL pour les données stockées dans HBase. Phoenix permet ainsi d'interagir sur les tables HBase à l'aide de requêtes SQL standard, sans avoir à écrire de code spécifique à HBase
Maxime Jumelle

Maxime Jumelle

CTO & Co-Founder

Lire l'article

Blog

15 mai 2023

Data Engineering

Apache Avro est un système de sérialisation de données et un format de données compact, rapide et polyvalent. Il a été développé par Apache Software Foundation et est conçu pour faciliter l'échange de données entre les différentes applications. Contrairement à d'autres formats comme CSV ou JSON, une des grandes particularités d'Apache Avro est qu'il utilise un schéma pour définir la structure des données, ce qui permet de sérialiser et de désérialiser les données de manière efficace, tout en garantissant la compatibilité entre les différentes versions des schémas.
Maxime Jumelle

Maxime Jumelle

CTO & Co-Founder

Lire l'article

Blog

12 mai 2023

Data Engineering

Apache Flink est un système de traitement des données en temps réel et de traitement par lots à grande échelle. Il s'agit d'un projet open source développé par la fondation Apache, conçu pour offrir une haute disponibilité, une faible latence et une grande capacité de traitement des flux de données. Flink fournit un modèle algorithmique unifié qui permet de traiter les données en temps réel et par lots de manière cohérente. Il prend en charge des opérations avancées telles que la transformation, le filtrage, l'agrégation et la jointure de données en continu.
Maxime Jumelle

Maxime Jumelle

CTO & Co-Founder

Lire l'article

Logo Blent

60 rue François 1er

75008 Paris

Blent est une plateforme 100% en ligne pour se former aux métiers Tech & Data.

Organisme de formation n°11755985075.

Gestion des cookies

© 2023 Blent.ai | Tous droits réservés